翻訳と辞書
Words near each other
・ Clifford, Virginia
・ Clifford, West Yorkshire
・ Clifford, Wisconsin
・ Clifford-Constable baronets
・ Clifford-New Glasgow Historic District
・ Clifford-Warren House
・ Cliffords Mesne
・ Clifford McLaglen
・ Clifford McNulty
・ Clifford Menhennitt
・ Clifford Merrick
・ Clifford Meth
・ Clifford Milburn Holland
・ Clifford Miranda
・ Clifford module
Clifford module bundle
・ Clifford Mollison
・ Clifford Monks
・ Clifford Monohan
・ Clifford Morris
・ Clifford Mulenga
・ Clifford Nass
・ Clifford Nelson Fyle
・ Clifford Newby-Harris
・ Clifford Ngobeni
・ Clifford Nii Boi Tagoe
・ Clifford Odets
・ Clifford Ohiagu
・ Clifford Olson
・ Clifford Orwin


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Clifford module bundle : ウィキペディア英語版
Clifford module bundle
In differential geometry, a Clifford module bundle, a bundle of Clifford modules or just Clifford module is a vector bundle whose fibers are Clifford modules, the representations of Clifford algebras. The canonical example is a spinor bundle.〔Berline et al (2004) pp.113-115〕〔Lawson & Michelsohn (1989) pp.96-97〕 In fact, on a Spin manifold, every Clifford module is obtained by twisting the spinor bundle.
The notion "Clifford module bundle" should not be confused with a Clifford bundle, which is a bundle of Clifford algebras.
==Spinor bundles==
(詳細はirreducible Clifford modules over ''Cℓ''(''T''
*''M''). In fact, such a bundle can be constructed if and only if ''M'' is a spin manifold.
Let ''M'' be an ''n''-dimensional spin manifold with spin structure ''F''Spin(''M'') → ''F''SO(''M'') on ''M''. Given any ''Cℓ''''n''R-module ''V'' one can construct the associated spinor bundle
:S(M) = F_{\mathrm{Spin}}(M) \times_\sigma V\,
where σ : Spin(''n'') → GL(''V'') is the representation of Spin(''n'') given by left multiplication on ''S''. Such a spinor bundle is said to be ''real'', ''complex'', ''graded'' or ''ungraded'' according to whether on not ''V'' has the corresponding property. Sections of ''S''(''M'') are called spinors on ''M''.
Given a spinor bundle ''S''(''M'') there is a natural bundle map
:C\ell(T^
*M) \otimes S(M) \to S(M)
which is given by left multiplication on each fiber. The spinor bundle ''S''(''M'') is therefore a bundle of Clifford modules over ''Cℓ''(''T''
*''M'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Clifford module bundle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.